Inhibition of Staphylococcus epidermidis Biofilms Using Polymerizable Vancomycin Derivatives
نویسندگان
چکیده
BACKGROUND Biofilm formation on indwelling medical devices is a ubiquitous problem causing considerable patient morbidity and mortality. In orthopaedic surgery, this problem is exacerbated by the large number and variety of material types that are implanted. Metallic hardware in conjunction with polymethylmethacrylate (PMMA) bone cement is commonly used. QUESTIONS/PURPOSES We asked whether polymerizable derivatives of vancomycin might be useful to (1) surface modify Ti-6Al-4V alloy and to surface/bulk modify PMMA bone cement to prevent Staphylococcus epidermidis biofilm formation and (2) whether the process altered the compressive modulus, yield strength, resilience, and/or fracture strength of cement copolymers. METHODS A Ti-6Al-4V alloy was silanized with methacryloxypropyltrimethoxysilane in preparation for subsequent polymer attachment. Surfaces were then coated with polymers formed from PEG(375)-acrylate or a vancomycin-PEG(3400)-PEG(375)-acrylate copolymer. PMMA was loaded with various species, including vancomycin and several polymerizable vancomycin derivatives. To assess antibiofilm properties of these materials, initial bacterial adherence to coated Ti-6Al-4V was determined by scanning electron microscopy (SEM). Biofilm dry mass was determined on PMMA coupons; the compressive mechanical properties were also determined. RESULTS SEM showed the vancomycin-PEG(3400)-acrylate-type surface reduced adherent bacteria numbers by approximately fourfold when compared with PEG(375)-acrylate alone. Vancomycin-loading reduced all mechanical properties tested; in contrast, loading a vancomycin-acrylamide derivative restored these deficits but demonstrated no antibiofilm properties. A polymerizable, PEGylated vancomycin derivative reduced biofilm attachment but resulted in inferior cement mechanical properties. CLINICAL RELEVANCE The approaches presented here may offer new strategies for developing biofilm-resistant orthopaedic materials. Specifically, polymerizable derivatives of traditional antibiotics may allow for direct polymerization into existing materials such as PMMA bone cement while minimizing mechanical property compromise. Questions remain regarding ideal monomer structure(s) that confer biologic and mechanical benefits.
منابع مشابه
Polymerizable Vancomycin Derivatives for Bactericidal Biomaterial Surface Modification: Structure−Function Evaluation
Surface modification of implantable biomaterials with biologically active functionalities, including antimicrobials, has wide potential for addressing implant-related design problems. Here, four polymerizable vancomycin derivatives bearing either acrylamide or poly(ethylene glycol) (PEG)-acrylate were synthesized and then polymerized through a surface-mediated reaction. Functionalization of van...
متن کاملAnti-bacterial and Anti-biofilm Evaluation of Thiazolopyrimidinone Derivatives Targeting the Histidine Kinase YycG Protein of Staphylococcus epidermidis
Staphylococcus epidermidis is one of the most important opportunistic pathogens in nosocomial infections. The main pathogenicity associated with S. epidermidis involves the formation of biofilms on implanted medical devices, biofilms dramatically decrease the efficacy of conventional antibiotics and the host immune system. This emphasizes the urgent need for designing novel anti-staphylococcal ...
متن کاملRifampicin enhances activity of daptomycin and vancomycin against both a polysaccharide intercellular adhesin (PIA)-dependent and -independent Staphylococcus epidermidis biofilm.
OBJECTIVES AND METHODS This study addressed the efficacy of daptomycin, vancomycin, rifampicin, daptomycin/rifampicin and vancomycin/rifampicin against a polysaccharide intercellular adhesin (PIA)-dependent and -independent Staphylococcus epidermidis biofilm using flow cell and guinea pig tissue cage models. RESULTS The flow cell model of both PIA-dependent and -independent biofilms demonstra...
متن کاملEradication of biofilm-forming Staphylococcus epidermidis (RP62A) by a combination of sodium salicylate and vancomycin.
Staphylococcus epidermidis is a major cause of infections associated with indwelling medical devices. Biofilm production is an important virulence attribute in the pathogenesis of device-related infections. Therefore, elimination of these biofilms is an ideal treatment. Salicylate (5 mM) combined with 1 microg of vancomycin per ml inhibited biofilm formation by S. epidermidis (RP62A) by >or=99....
متن کامل409Efficacy of Vancomycin against Biofilms of Neonatal Staphylococcus epidermidis Bloodstream Isolates
409. Efficacy of Vancomycin against Biofilms of Neonatal Staphylococcus epidermidis Bloodstream Isolates Maria Simitsopoulou, PhD; Daniela Kyrpitzi; Virginia Ramos Martin; William Hope; Emmanuel Roilides, MD, PhD; Pediatrics, Aristotle University of Thessaloniki, Thessaloniki, Greece; Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom; 3rd Pediatric Departme...
متن کامل